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Notation for today

Every variety today is complex.

We will denote by X a fixed “ambient” variety which is smooth and
connected of dimension dimX = n.

We write f ∈ OX or f1, . . . , fr ∈ OX for regular functions on X .

For affine space Ar , we will often denote a choice of coordinates on
Ar by a subscript. So An

y has coordinates y1, . . . , yr .

We use V (f1, . . . , fr ) ⊆ X to denote the subvariety defined by the
regular functions f1, . . . , fr in X .
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Hypersurface case: Log canonical threshold

Let H = V (f ) ⊆ X be a hypersurface in the smooth variety X . Let
π : Y → X be a strong resolution of singularities of the pair (X ,H),
i.e., a proper map with Y smooth which is an isomorphism over
X − H and so that E = π−1(H) has normal crossings support.

Numerical data: Let KY /X =
∑

i∈I kiEi and
π∗(H) = div(π∗(f )) =

∑
i∈I aiEi , where Ei are prime divisors which

are exceptional for π.

The log canonical threshold of the pair (X ,H) is

lct(X ,H) = lct(f ) = min
i

ki + 1

ai
.

It is related to triviality of multiplier ideals I(f λ), which are also
defined via numerical data.
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LCT: First properties

If H is smooth, then lct(f ) = 1. In general, lct(f ) ≤ 1. With this in
mind, we view smaller log canonical thresholds as “more singular”.

It is possible for lct(f ) = 1 even if f defines a singular divisor. These
are called log canonical singularities. For example, f = x1x2 on A2

x .

An interesting example is the cusp: f = x21 + x32 . It satisfies
lct(f ) = 5

6 .
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Differential Operators

As X is smooth, can locally trivialize tangent bundle

TX =
n⊕

i=1

OX∂xi . (1)

By definition, TX ⊆ End(OX ), and so we can consider the subalgebra
generated by TX and OX (acting by multiplication). This is the ring
of differential operators DX . If TX is trivialized as in (1), then

DX = {
∑
α∈Nn

hα∂
α
x | hα ∈ OX}.

This is a non-commutative ring unless X is a point. Indeed, the
commutator [∂xi , h] = ∂xi (h) need not be 0.
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Bernstein-Sato polynomials

Let f ∈ OX as before and let s be a new variable.

Consider the free, rank one OX [s,
1
f ]-module

OX [s,
1

f
]f s ,

which we endow via the Leibniz and power rules an action of DX

(which commutes with s):

∂xi (hf
s) = ∂xi (h)f

s + h
∂xi (f )s

f
f s .

Theorem (Bernstein,Kashiwara,Björk)

There exists a non-zero monic polynomial bf (s) ∈ C[s] of least degree and
an element P(s) ∈ DX [s] such that

bf (s)f
s = P(s)f s+1,

called the Bernstein-Sato polynomial of f .
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Examples of Bernstein-Sato Polynomials

Smooth Normal Crossings Cusp

f x1 x1x2 x21 + x3

LCT: 1 1 5
6

bf (s): (s + 1) (s + 1)2 (s + 1)(s + 5
6)(s +

7
6)

1 (Trivial) Always divisible by (s + 1).

2 (Lichtin, Kollár) We see LCT as (negative of largest) roots of these
polynomials.

3 (Kashiwara) All roots are negative and rational.

4 (Brainçon-Maisonobe) Only the smooth one has bf (s) actually equal
to (s + 1).
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Definition of Minimal Exponent

We can consider the polynomial bf (s)/(s + 1) = b̃f (s).

Definition (M. Saito)

Let α̃(f ) be the negative of the largest root of the polynomial b̃f (s). It is
called the minimal exponent of f .

Trivially we have lct(f ) = min{1, α̃(f )} and it is a positive rational
number.

Non-trivially: Saito showed α̃(f ) ≤ n
2 if f defines a singular

hypersurface. If f defines a smooth hypersurface, we set α̃(f ) = +∞.
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du Bois complex

For any finite type C-scheme Z , du Bois defined (Ω•
Z ,F ), an object of

a certain “filtered derived category”.

Without saying what that is, this
means for any p ∈ Z we can consider the associated graded complexes

grFp Ω
•
Z ∈ Db

coh(OZ )

a bounded complex with coherent cohomology.

By the construction (which I will not go into), there is a natural
morphism

Ωp
Z → Ωp

Z := grF−pΩ
•
Z [p],

which is an isomorphism if Z is smooth.

In a vague (Hodge theoretic) sense, this is a nice replacement for the
de Rham complex Ω•

Z .
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Higher du Bois singularities

Steenbrink defined a class of singularities, called du Bois singularities,
as those varieties Z such that the natural morphism

OZ → Ω0
Z

is a quasi-isomorphism.

Jung, Kim, Saito and Yoon defined recently the class of k-du Bois
singularities, which are those for which the map

Ωp
Z → Ωp

Z

is a quasi-isomorphism for all p ≤ k .

Theorem (JKSY, Mustaţă-Popa-Olano-Witaszek)

Let H = V (f ) ⊆ X be a hypersurface. Then

α̃(f ) ≥ k + 1 ⇐⇒ H has k-du Bois singularities.
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Higher rational singularities

A classical notion of singularity is rational singularities: let π : Z̃ → Z
be a resolution of singularities. Then Z has rational singularities iff
the natural map OZ → Rπ∗(OZ̃

) is a quasi-isomorphism.

Kovács showed that rational singularities are du Bois. Saito showed
that, for H = V (f ) ⊆ X , H has rational singularities iff α̃(H) > 1.

Recently, Friedman-Laza defined the notion of k-rational singularities.
Using a resolution, one can construct a morphism

Ωk
Z

ψk−→ RHom(ΩdimZ
Z , ω•

Z ).

Then one requires Z be k-du Bois and for ψp to be a
quasi-isomorphism for all p ≤ k . For hypersurfaces, Saito shows
equiv. to α̃(f ) > k + 1.
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Case of Z = V (f1, . . . , fr)

The notion of LCT immediately generalizes to Z defined by an ideal
(f1, . . . , fr ). In fact, one can define a Bernstein-Sato polynomial for
f1, . . . , fr : bf (s), and the LCT is again the negative of the largest root
of this polynomial.

Budur-Mustaţă-Saito related this polynomial to rational singularities
of Z , if codimX (Z ) = r . However, for the other classes of
singularities, this is difficult (thus far, not possible) to do.

To remedy this, we take inspiration from a result of Mustaţă:

Theorem (Mustaţă)

Let g =
∑r

i=1 fiyi ∈ OY where Y = X × Ar
y . Then

b̃g (s) = bf (s).
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Definition of Minimal Exponent for Z

Let U = Y − (X × {0}). Assume codimX (Z ) = r (so Z is a complete
intersection). We define the minimal exponent of Z as

α̃(Z ) := α̃(g |U).

Why restrict to U? First of all, bf (s) is always divisible by (s + r) in
the complete intersection case. So α̃(g) ≤ r =⇒ can’t just use g .

Secondly, a simple computation shows that

Sing(g) = (Z × {0}) ∪ Σ,

where Σ lies over Zsing . Restricting to U removes the “trivial” part of
this singular locus.
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Properties and Example

Proposition

1 This does not depend on choice of f1, . . . , fr . α̃(Z )− dimX only
depends on Z .

2 There is a local notion α̃x(Z ) for x ∈ Z (similar to the case of log
canonical threshold). We have α̃x(Z ) = maxx∈V α̃(V ,V ∩ Z ).

3 There is a restriction inequality and a semicontinuity result for α̃x(Z ).

4 If x is a point of multiplicity k on Z , then α̃x(Z ) ≤ n
k .

Let f1, . . . , fr be weighted homogeneous polynomials on An
x of the same

degree D. Let w1, . . . ,wn be the weights of the variables x1, . . . , xn, so

that
(∑n

j=1 wjxj∂xj

)
(fi ) = Dfi .

If Z = V (f1, . . . , fr ) has codimension r and has only a singular point at 0,

then α̃(Z ) =
∑n

i=1 wi

D . (This is already known for r = 1)
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Main Results

The main results are exact analogues of the hypersurface results:

Theorem (Chen-D.-Mustaţă-Olano, Chen-D.-Mustaţă)

Let Z ⊆ X be a local complete intersection of pure codimension r . Then

α̃(Z ) ≥ r + k ⇐⇒ Z has k-du Bois singularities.

α̃(Z ) > r + k ⇐⇒ Z has k-rational singularities.

To give a sketch of the proof, we need to vaguely describe what
mixed Hodge modules on X are. These were defined by Saito.

The category of mixed Hodge modules on X is an abelian category
MHM(X ) of finite length. It satisfies a “six functor formalism” in the
sense of Grothendieck.
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Hodge Modules

For any smooth complex algebraic variety W , part of the data of a
mixed Hodge module is a bifiltered DW -module:

(M,F•M,W•M),

where F• (the “Hodge filtration”) is bounded below and consists of
coherent OW -submodules and W• (the “weight filtration”) is finite
and consists of DW -submodules.

Every morphism of mixed Hodge modules is a DW -linear map. It is
automatically bi-strict with respect to F and W .

If W is a point, then MHM(W ) is equivalent to the category of
(graded polarized) mixed Hodge structures.
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V -filtrations

Now let W = X × Ar
t . Kashiwara (following work of Malgrange)

showed that every “regular holonomic” DW -module M admits a
“V -filtration” along t1, . . . , tr .

Initially, this filtration was indexed by Z, but Saito refined it to a
Q-indexed filtration. In this way, it is discretely and left-continuously
indexed (so there are countably many jumping numbers). Essentially,
it attempts to diagonalize the Euler operator θ =

∑r
i=1 ti∂ti .

The important properties are
1 tiV

λM ⊆ V λ+1M.
2 ∂tiV

λM ⊆ V λ−1M.
3 θ − λ+ r acts nilpotently on grλVM, where V>λM =

⋃
β>λ V

βM.
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Local Cohomology (mixed Hodge) module

Returning to LCI Z = V (f1, . . . , fr ) ⊆ X , the middle-man in the proof
is the local cohomology mixed Hodge module Hr

Z (OX ). This is
defined as the cokernel of the natural map

r⊕
i=1

OX [
1

f1 . . . f̂i . . . fr
] → OX [

1

f1 . . . fr
].

Both terms are naturally mixed Hodge modules, so Hr
Z (OX ) is, too.

Hence, it carries a Hodge and weight filtration. The Hodge filtration
starts at 0, and the weight filtration starts at n + r .

We see that Hr
Z (OX ) is supported on Z , so we can also consider the

pole order filtration

PkHr
Z (OX ) = {m | (f1, . . . , fr )k+1 ·m = 0}.

Saito (for r = 1) and Mustaţă-Popa (in general) showed that

Fk ⊆ Pk .
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Saito (for r = 1) and Mustaţă-Popa (in general) showed that

Fk ⊆ Pk .

Birational Geometry Seminar 2023 Minimal Exponent May 12, 2023 19 / 22



Sketching the proof

If i : X → X × Ar
t is the graph embedding along f1, . . . , fr , we can

consider the Hodge module Bf = i+OX . It has easy to understand
Hodge and weight filtrations. The interesting thing about it is its
V -filtration along t1, . . . , tr .

For example, Budur-Mustaţă-Saito showed F0V
λBf = I(X ,Zλ−ϵ) for

0 < ϵ≪ 1.

Malgrange showed how to interpret Bf as a DX×Ar
t
-submodule of

B := OX [s1, . . . , sr ,
1

f1 . . . fr
]f s11 . . . f srr .

The “evaluate at −1” map B → Hr
Z (OX ) sending si 7→ −1 restricts

to V rBf ⊆ Bf . It turns out that it descends to an isomorphism on
the quotient

V rBf /

r∑
i=1

tiV
r−1Bf . (2)
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Finishing the Sketch

My work with Qianyu Chen shows that the quotient is even
isomorphic to Hr

Z (OX ) as a mixed Hodge module. In fact, the map
described above, by general considerations, is one such isomorphism.

Mustaţă-Popa showed that Z has k-du Bois singularities iff Fk = Pk .
We show that α̃(Z ) ≥ r + k is equivalent to FkBf ⊆ V rBf , and
under the map described above, this is equivalent to Fk = Pk .

We show that Z has k-rational singularities iff Fk ∩Wn+r = Pk

(which, of course, implies Fk = Pk , so Z has k-du Bois singularities).
It is not hard to see that this latter condition is equivalent to
Fk+1Bf ⊆ V>(r−1)Bf . We show finally that this is equivalent to
α̃(Z ) > r + k , finishing the proof.
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Some Corollaries

For LCI Z , k-du Bois implies (k − 1)-rational.

(MP) If LCI Z has k-du Bois singularities, then
codimZ (Zsing ) ≥ 2k + 1.
(CDM) If LCI Z has k-rational singularities, then
codimZ (Zsing ) ≥ 2k + 2.

Sketch of Proof.

By the restriction result, we can slice by general hyperplanes to assume Z
has isolated singularities. Then we must show that dimZ = d ≥ 2k + 2.
In analogy with Saito’s upper bound, we know for x ∈ Zsing

α̃x(Z ) ≤ dimX − 1

2
dimC TxZ ,

and by x ∈ Zsing , we have dimC TxZ ≥ d + 1. Then use α̃x(Z ) > r + k to
conclude d > 2k + 1.
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