Higher du Bois and higher rational singularities for LCI varieties

Bradley Dirks

May 12, 2023

Overview

(1) Some invariants of hypersurface singularities

Overview

(1) Some invariants of hypersurface singularities
(2) Higher du Bois and higher rational singularities

Overview

(1) Some invariants of hypersurface singularities
(2) Higher du Bois and higher rational singularities
(3) Minimal Exponent for Local Complete Intersections (LCI)

Overview

(1) Some invariants of hypersurface singularities
(2) Higher du Bois and higher rational singularities
(3) Minimal Exponent for Local Complete Intersections (LCI)
(9) Brief description of mixed Hodge modules and local cohomology

Overview

(1) Some invariants of hypersurface singularities
(2) Higher du Bois and higher rational singularities
(3) Minimal Exponent for Local Complete Intersections (LCI)
(9) Brief description of mixed Hodge modules and local cohomology
(0) Sketch of Proof and some Corollaries

Notation for today

- Every variety today is complex.

Notation for today

- Every variety today is complex.
- We will denote by X a fixed "ambient" variety which is smooth and connected of dimension $\operatorname{dim} X=n$.

Notation for today

- Every variety today is complex.
- We will denote by X a fixed "ambient" variety which is smooth and connected of dimension $\operatorname{dim} X=n$.
- We write $f \in \mathcal{O}_{X}$ or $f_{1}, \ldots, f_{r} \in \mathcal{O}_{X}$ for regular functions on X.

Notation for today

- Every variety today is complex.
- We will denote by X a fixed "ambient" variety which is smooth and connected of dimension $\operatorname{dim} X=n$.
- We write $f \in \mathcal{O}_{X}$ or $f_{1}, \ldots, f_{r} \in \mathcal{O}_{X}$ for regular functions on X.
- For affine space \mathbf{A}^{r}, we will often denote a choice of coordinates on \mathbf{A}^{r} by a subscript. So \mathbf{A}_{y}^{n} has coordinates y_{1}, \ldots, y_{r}.

Notation for today

- Every variety today is complex.
- We will denote by X a fixed "ambient" variety which is smooth and connected of dimension $\operatorname{dim} X=n$.
- We write $f \in \mathcal{O}_{X}$ or $f_{1}, \ldots, f_{r} \in \mathcal{O}_{X}$ for regular functions on X.
- For affine space \mathbf{A}^{r}, we will often denote a choice of coordinates on \mathbf{A}^{r} by a subscript. So \mathbf{A}_{y}^{n} has coordinates y_{1}, \ldots, y_{r}.
- We use $V\left(f_{1}, \ldots, f_{r}\right) \subseteq X$ to denote the subvariety defined by the regular functions f_{1}, \ldots, f_{r} in X.

Hypersurface case: Log canonical threshold

- Let $H=V(f) \subseteq X$ be a hypersurface in the smooth variety X. Let $\pi: Y \rightarrow X$ be a strong resolution of singularities of the pair (X, H), i.e., a proper map with Y smooth which is an isomorphism over $X-H$ and so that $E=\pi^{-1}(H)$ has normal crossings support.

Hypersurface case: Log canonical threshold

- Let $H=V(f) \subseteq X$ be a hypersurface in the smooth variety X. Let $\pi: Y \rightarrow X$ be a strong resolution of singularities of the pair (X, H), i.e., a proper map with Y smooth which is an isomorphism over $X-H$ and so that $E=\pi^{-1}(H)$ has normal crossings support.
- Numerical data: Let $K_{Y / X}=\sum_{i \in I} k_{i} E_{i}$ and $\pi^{*}(H)=\operatorname{div}\left(\pi^{*}(f)\right)=\sum_{i \in I} a_{i} E_{i}$, where E_{i} are prime divisors which are exceptional for π.

Hypersurface case: Log canonical threshold

- Let $H=V(f) \subseteq X$ be a hypersurface in the smooth variety X. Let $\pi: Y \rightarrow X$ be a strong resolution of singularities of the pair (X, H), i.e., a proper map with Y smooth which is an isomorphism over $X-H$ and so that $E=\pi^{-1}(H)$ has normal crossings support.
- Numerical data: Let $K_{Y / X}=\sum_{i \in I} k_{i} E_{i}$ and $\pi^{*}(H)=\operatorname{div}\left(\pi^{*}(f)\right)=\sum_{i \in I} a_{i} E_{i}$, where E_{i} are prime divisors which are exceptional for π.
- The log canonical threshold of the pair (X, H) is

$$
\operatorname{lct}(X, H)=\operatorname{lct}(f)=\min _{i} \frac{k_{i}+1}{a_{i}}
$$

Hypersurface case: Log canonical threshold

- Let $H=V(f) \subseteq X$ be a hypersurface in the smooth variety X. Let $\pi: Y \rightarrow X$ be a strong resolution of singularities of the pair (X, H), i.e., a proper map with Y smooth which is an isomorphism over $X-H$ and so that $E=\pi^{-1}(H)$ has normal crossings support.
- Numerical data: Let $K_{Y / X}=\sum_{i \in I} k_{i} E_{i}$ and $\pi^{*}(H)=\operatorname{div}\left(\pi^{*}(f)\right)=\sum_{i \in I} a_{i} E_{i}$, where E_{i} are prime divisors which are exceptional for π.
- The log canonical threshold of the pair (X, H) is

$$
\operatorname{lct}(X, H)=\operatorname{lct}(f)=\min _{i} \frac{k_{i}+1}{a_{i}}
$$

- It is related to triviality of multiplier ideals $\mathcal{I}\left(f^{\lambda}\right)$, which are also defined via numerical data.

LCT: First properties

- If H is smooth, then $\operatorname{Ict}(f)=1$. In general, $\operatorname{Ict}(f) \leq 1$. With this in mind, we view smaller log canonical thresholds as "more singular".

LCT: First properties

- If H is smooth, then $\operatorname{Ict}(f)=1$. In general, $\operatorname{Ict}(f) \leq 1$. With this in mind, we view smaller log canonical thresholds as "more singular".
- It is possible for $\operatorname{lct}(f)=1$ even if f defines a singular divisor. These are called \log canonical singularities. For example, $f=x_{1} x_{2}$ on \mathbf{A}_{x}^{2}.

LCT: First properties

- If H is smooth, then $\operatorname{Ict}(f)=1$. In general, $\operatorname{Ict}(f) \leq 1$. With this in mind, we view smaller log canonical thresholds as "more singular".
- It is possible for $\operatorname{lct}(f)=1$ even if f defines a singular divisor. These are called \log canonical singularities. For example, $f=x_{1} x_{2}$ on \mathbf{A}_{x}^{2}.
- An interesting example is the cusp: $f=x_{1}^{2}+x_{2}^{3}$. It satisfies $\operatorname{lct}(f)=\frac{5}{6}$.

Differential Operators

- As X is smooth, can locally trivialize tangent bundle

$$
\begin{equation*}
\mathcal{T}_{X}=\bigoplus_{i=1}^{n} \mathcal{O}_{X} \partial_{x_{i}} \tag{1}
\end{equation*}
$$

Differential Operators

- As X is smooth, can locally trivialize tangent bundle

$$
\begin{equation*}
\mathcal{T}_{X}=\bigoplus_{i=1}^{n} \mathcal{O}_{X} \partial_{x_{i}} \tag{1}
\end{equation*}
$$

- By definition, $\mathcal{T}_{X} \subseteq \mathcal{E} n d\left(\mathcal{O}_{X}\right)$, and so we can consider the subalgebra generated by \mathcal{T}_{X} and \mathcal{O}_{X} (acting by multiplication). This is the ring of differential operators \mathcal{D}_{X}. If \mathcal{T}_{X} is trivialized as in (1), then

$$
\mathcal{D}_{X}=\left\{\sum_{\alpha \in \mathbf{N}^{n}} h_{\alpha} \partial_{x}^{\alpha} \mid h_{\alpha} \in \mathcal{O}_{X}\right\}
$$

Differential Operators

- As X is smooth, can locally trivialize tangent bundle

$$
\begin{equation*}
\mathcal{T}_{X}=\bigoplus_{i=1}^{n} \mathcal{O}_{X} \partial_{x_{i}} \tag{1}
\end{equation*}
$$

- By definition, $\mathcal{T}_{X} \subseteq \mathcal{E} n d\left(\mathcal{O}_{X}\right)$, and so we can consider the subalgebra generated by \mathcal{T}_{X} and \mathcal{O}_{X} (acting by multiplication). This is the ring of differential operators \mathcal{D}_{X}. If \mathcal{T}_{X} is trivialized as in (1), then

$$
\mathcal{D}_{X}=\left\{\sum_{\alpha \in \mathbf{N}^{n}} h_{\alpha} \partial_{x}^{\alpha} \mid h_{\alpha} \in \mathcal{O}_{X}\right\}
$$

- This is a non-commutative ring unless X is a point. Indeed, the commutator $\left[\partial_{x_{i}}, h\right]=\partial_{x_{i}}(h)$ need not be 0 .

Bernstein-Sato polynomials

- Let $f \in \mathcal{O}_{X}$ as before and let s be a new variable.

Bernstein-Sato polynomials

- Let $f \in \mathcal{O}_{X}$ as before and let s be a new variable.
- Consider the free, rank one $\mathcal{O}_{X}\left[s, \frac{1}{f}\right]$-module

$$
\mathcal{O}_{X}\left[s, \frac{1}{f}\right] f^{s}
$$

which we endow via the Leibniz and power rules an action of \mathcal{D}_{X} (which commutes with s):

$$
\partial_{x_{i}}\left(h f^{s}\right)=\partial_{x_{i}}(h) f^{s}+h \frac{\partial_{x_{i}}(f) s}{f} f^{s} .
$$

Bernstein-Sato polynomials

- Let $f \in \mathcal{O}_{X}$ as before and let s be a new variable.
- Consider the free, rank one $\mathcal{O}_{X}\left[s, \frac{1}{f}\right]$-module

$$
\mathcal{O}_{X}\left[s, \frac{1}{f}\right] f^{s}
$$

which we endow via the Leibniz and power rules an action of \mathcal{D}_{X} (which commutes with s):

$$
\partial_{x_{i}}\left(h f^{s}\right)=\partial_{x_{i}}(h) f^{s}+h \frac{\partial_{x_{i}}(f) s}{f} f^{s} .
$$

Theorem (Bernstein,Kashiwara,Björk)
There exists a non-zero monic polynomial $b_{f}(s) \in \mathbf{C}[s]$ of least degree and an element $P(s) \in \mathcal{D}_{X}[s]$ such that

$$
b_{f}(s) f^{s}=P(s) f^{s+1}
$$

called the Bernstein-Sato polynomial of f.

Examples of Bernstein-Sato Polynomials

	Smooth	Normal Crossings	Cusp
f	x_{1}	$x_{1} x_{2}$	$x_{1}^{2}+x^{3}$
LCT:	1	1	$\frac{5}{6}$
$b_{f}(s):$	$(s+1)$	$(s+1)^{2}$	$(s+1)\left(s+\frac{5}{6}\right)\left(s+\frac{7}{6}\right)$

Examples of Bernstein-Sato Polynomials

	Smooth	Normal Crossings	Cusp
f	x_{1}	$x_{1} x_{2}$	$x_{1}^{2}+x^{3}$
LCT:	1	1	$\frac{5}{6}$
$b_{f}(s):$	$(s+1)$	$(s+1)^{2}$	$(s+1)\left(s+\frac{5}{6}\right)\left(s+\frac{7}{6}\right)$

(1) (Trivial) Always divisible by $(s+1)$.

Examples of Bernstein-Sato Polynomials

	Smooth	Normal Crossings	Cusp
f	x_{1}	$x_{1} x_{2}$	$x_{1}^{2}+x^{3}$
LCT:	1	1	$\frac{5}{6}$
$b_{f}(s):$	$(s+1)$	$(s+1)^{2}$	$(s+1)\left(s+\frac{5}{6}\right)\left(s+\frac{7}{6}\right)$

(1) (Trivial) Always divisible by $(s+1)$.
(2) (Lichtin, Kollár) We see LCT as (negative of largest) roots of these polynomials.

Examples of Bernstein-Sato Polynomials

	Smooth	Normal Crossings	Cusp
f	x_{1}	$x_{1} x_{2}$	$x_{1}^{2}+x^{3}$
LCT:	1	1	$\frac{5}{6}$
$b_{f}(s):$	$(s+1)$	$(s+1)^{2}$	$(s+1)\left(s+\frac{5}{6}\right)\left(s+\frac{7}{6}\right)$

(1) (Trivial) Always divisible by $(s+1)$.
(2) (Lichtin, Kollár) We see LCT as (negative of largest) roots of these polynomials.
(3) (Kashiwara) All roots are negative and rational.
(9) (Brainçon-Maisonobe) Only the smooth one has $b_{f}(s)$ actually equal to $(s+1)$.

Definition of Minimal Exponent

- We can consider the polynomial $b_{f}(s) /(s+1)=\widetilde{b}_{f}(s)$.

Definition of Minimal Exponent

- We can consider the polynomial $b_{f}(s) /(s+1)=\widetilde{b}_{f}(s)$.

Let $\widetilde{\alpha}(f)$ be the negative of the largest root of the polynomial $\widetilde{b}_{f}(s)$. It is called the minimal exponent of f.

Definition of Minimal Exponent

- We can consider the polynomial $b_{f}(s) /(s+1)=\widetilde{b}_{f}(s)$.

Let $\widetilde{\alpha}(f)$ be the negative of the largest root of the polynomial $\widetilde{b}_{f}(s)$. It is called the minimal exponent of f.

- Trivially we have $\operatorname{Ict}(f)=\min \{1, \widetilde{\alpha}(f)\}$ and it is a positive rational number.

Definition of Minimal Exponent

- We can consider the polynomial $b_{f}(s) /(s+1)=\widetilde{b}_{f}(s)$.

Let $\widetilde{\alpha}(f)$ be the negative of the largest root of the polynomial $\widetilde{b}_{f}(s)$. It is called the minimal exponent of f.

- Trivially we have $\operatorname{lct}(f)=\min \{1, \widetilde{\alpha}(f)\}$ and it is a positive rational number.
- Non-trivially: Saito showed $\widetilde{\alpha}(f) \leq \frac{n}{2}$ if f defines a singular hypersurface. If f defines a smooth hypersurface, we set $\widetilde{\alpha}(f)=+\infty$.

du Bois complex

- For any finite type C-scheme Z, du Bois defined $\left(\underline{\Omega}_{Z}^{\bullet}, F\right)$, an object of a certain "filtered derived category".

du Bois complex

- For any finite type C-scheme Z, du Bois defined $\left(\underline{\Omega}_{Z}^{\bullet}, F\right)$, an object of a certain "filtered derived category". Without saying what that is, this means for any $p \in \mathbf{Z}$ we can consider the associated graded complexes

$$
g r_{p}^{F} \underline{\Omega}_{Z}^{\bullet} \in D_{c o h}^{b}\left(\mathcal{O}_{Z}\right)
$$

a bounded complex with coherent cohomology.

du Bois complex

- For any finite type C-scheme Z, du Bois defined $\left(\underline{\Omega}_{Z}^{\bullet}, F\right)$, an object of a certain "filtered derived category". Without saying what that is, this means for any $p \in \mathbf{Z}$ we can consider the associated graded complexes

$$
g r_{p}^{F} \underline{\Omega}_{Z}^{\bullet} \in D_{c o h}^{b}\left(\mathcal{O}_{Z}\right)
$$

a bounded complex with coherent cohomology.

- By the construction (which I will not go into), there is a natural morphism

$$
\Omega_{Z}^{p} \rightarrow \underline{\Omega}_{Z}^{p}:=g r_{-p}^{F} \underline{\Omega}_{Z}^{\bullet}[p],
$$

which is an isomorphism if Z is smooth.

du Bois complex

- For any finite type C-scheme Z, du Bois defined $\left(\underline{\Omega}_{Z}^{\bullet}, F\right)$, an object of a certain "filtered derived category". Without saying what that is, this means for any $p \in \mathbf{Z}$ we can consider the associated graded complexes

$$
g r_{p}^{F} \underline{\Omega}_{Z}^{\bullet} \in D_{c o h}^{b}\left(\mathcal{O}_{Z}\right)
$$

a bounded complex with coherent cohomology.

- By the construction (which I will not go into), there is a natural morphism

$$
\Omega_{Z}^{p} \rightarrow \underline{\Omega}_{Z}^{p}:=g r_{-p}^{F} \underline{\Omega}_{Z}^{\bullet}[p],
$$

which is an isomorphism if Z is smooth.

- In a vague (Hodge theoretic) sense, this is a nice replacement for the de Rham complex Ω_{Z}^{\bullet}.

Higher du Bois singularities

- Steenbrink defined a class of singularities, called du Bois singularities, as those varieties Z such that the natural morphism

$$
\mathcal{O}_{Z} \rightarrow \underline{\Omega}_{Z}^{0}
$$

is a quasi-isomorphism.

Higher du Bois singularities

- Steenbrink defined a class of singularities, called du Bois singularities, as those varieties Z such that the natural morphism

$$
\mathcal{O}_{Z} \rightarrow \underline{\Omega}_{Z}^{0}
$$

is a quasi-isomorphism.

- Jung, Kim, Saito and Yoon defined recently the class of k-du Bois singularities, which are those for which the map

$$
\Omega_{Z}^{p} \rightarrow \underline{\Omega}_{Z}^{p}
$$

is a quasi-isomorphism for all $p \leq k$.

Higher du Bois singularities

- Steenbrink defined a class of singularities, called du Bois singularities, as those varieties Z such that the natural morphism

$$
\mathcal{O}_{Z} \rightarrow \underline{\Omega}_{Z}^{0}
$$

is a quasi-isomorphism.

- Jung, Kim, Saito and Yoon defined recently the class of k-du Bois singularities, which are those for which the map

$$
\Omega_{Z}^{p} \rightarrow \underline{\Omega}_{Z}^{p}
$$

is a quasi-isomorphism for all $p \leq k$.
Theorem (JKSY, Mustață-Popa-Olano-Witaszek)
Let $H=V(f) \subseteq X$ be a hypersurface. Then

$$
\widetilde{\alpha}(f) \geq k+1 \Longleftrightarrow H \text { has } k \text {-du Bois singularities. }
$$

Higher rational singularities

- A classical notion of singularity is rational singularities: let $\pi: \widetilde{Z} \rightarrow Z$ be a resolution of singularities. Then Z has rational singularities iff the natural $\operatorname{map} \mathcal{O}_{Z} \rightarrow R \pi_{*}\left(\mathcal{O}_{\tilde{Z}}\right)$ is a quasi-isomorphism.

Higher rational singularities

- A classical notion of singularity is rational singularities: let $\pi: \tilde{Z} \rightarrow Z$ be a resolution of singularities. Then Z has rational singularities iff the natural map $\mathcal{O}_{Z} \rightarrow R \pi_{*}\left(\mathcal{O}_{\tilde{Z}}\right)$ is a quasi-isomorphism.
- Kovács showed that rational singularities are du Bois. Saito showed that, for $H=V(f) \subseteq X, H$ has rational singularities iff $\widetilde{\alpha}(H)>1$.

Higher rational singularities

- A classical notion of singularity is rational singularities: let $\pi: \tilde{Z} \rightarrow Z$ be a resolution of singularities. Then Z has rational singularities iff the natural map $\mathcal{O}_{Z} \rightarrow R \pi_{*}\left(\mathcal{O}_{\tilde{Z}}\right)$ is a quasi-isomorphism.
- Kovács showed that rational singularities are du Bois. Saito showed that, for $H=V(f) \subseteq X, H$ has rational singularities iff $\widetilde{\alpha}(H)>1$.
- Recently, Friedman-Laza defined the notion of k-rational singularities. Using a resolution, one can construct a morphism

$$
\underline{\Omega}_{Z}^{k} \xrightarrow{\psi_{k}} R \mathcal{H o m}\left(\underline{\Omega}_{Z}^{\operatorname{dim} Z}, \omega_{Z}^{\bullet}\right)
$$

Then one requires Z be k-du Bois and for ψ_{p} to be a quasi-isomorphism for all $p \leq k$. For hypersurfaces, Saito shows equiv. to $\widetilde{\alpha}(f)>k+1$.

Case of $Z=V\left(f_{1}, \ldots, f_{r}\right)$

- The notion of LCT immediately generalizes to Z defined by an ideal $\left(f_{1}, \ldots, f_{r}\right)$. In fact, one can define a Bernstein-Sato polynomial for $f_{1}, \ldots, f_{r}: b_{f}(s)$, and the LCT is again the negative of the largest root of this polynomial.

Case of $Z=V\left(f_{1}, \ldots, f_{r}\right)$

- The notion of LCT immediately generalizes to Z defined by an ideal $\left(f_{1}, \ldots, f_{r}\right)$. In fact, one can define a Bernstein-Sato polynomial for $f_{1}, \ldots, f_{r}: b_{f}(s)$, and the LCT is again the negative of the largest root of this polynomial.
- Budur-Mustață-Saito related this polynomial to rational singularities of Z, if $\operatorname{codim}_{X}(Z)=r$. However, for the other classes of singularities, this is difficult (thus far, not possible) to do.

Case of $Z=V\left(f_{1}, \ldots, f_{r}\right)$

- The notion of LCT immediately generalizes to Z defined by an ideal $\left(f_{1}, \ldots, f_{r}\right)$. In fact, one can define a Bernstein-Sato polynomial for $f_{1}, \ldots, f_{r}: b_{\underline{f}}(s)$, and the LCT is again the negative of the largest root of this polynomial.
- Budur-Mustață-Saito related this polynomial to rational singularities of Z, if $\operatorname{codim}_{X}(Z)=r$. However, for the other classes of singularities, this is difficult (thus far, not possible) to do.
- To remedy this, we take inspiration from a result of Mustață:

Theorem (Mustață)
Let $g=\sum_{i=1}^{r} f_{i} y_{i} \in \mathcal{O}_{Y}$ where $Y=X \times \mathbf{A}_{y}^{r}$. Then

$$
\widetilde{b}_{g}(s)=b_{\underline{f}}(s)
$$

Definition of Minimal Exponent for Z

- Let $U=Y-(X \times\{0\})$. Assume $\operatorname{codim}_{X}(Z)=r$ (so Z is a complete intersection). We define the minimal exponent of Z as

$$
\widetilde{\alpha}(Z):=\widetilde{\alpha}\left(\left.g\right|_{u}\right)
$$

Definition of Minimal Exponent for Z

- Let $U=Y-(X \times\{0\})$. Assume $\operatorname{codim}_{X}(Z)=r$ (so Z is a complete intersection). We define the minimal exponent of Z as

$$
\widetilde{\alpha}(Z):=\widetilde{\alpha}\left(\left.g\right|_{U}\right)
$$

- Why restrict to U ? First of all, $b_{\underline{f}}(s)$ is always divisible by $(s+r)$ in the complete intersection case. So $\widetilde{\alpha}(g) \leq r \Longrightarrow$ can't just use g.

Definition of Minimal Exponent for Z

- Let $U=Y-(X \times\{0\})$. Assume $\operatorname{codim}_{X}(Z)=r$ (so Z is a complete intersection). We define the minimal exponent of Z as

$$
\widetilde{\alpha}(Z):=\widetilde{\alpha}\left(\left.g\right|_{U}\right)
$$

- Why restrict to U ? First of all, $b_{f}(s)$ is always divisible by $(s+r)$ in the complete intersection case. So $\widetilde{\alpha}(g) \leq r \Longrightarrow$ can't just use g.
- Secondly, a simple computation shows that

$$
\operatorname{Sing}(g)=(Z \times\{0\}) \cup \Sigma
$$

where Σ lies over $Z_{\text {sing }}$. Restricting to U removes the "trivial" part of this singular locus.

Properties and Example

Proposition

(1) This does not depend on choice of $f_{1}, \ldots, f_{r} . \widetilde{\alpha}(Z)-\operatorname{dim} X$ only depends on Z.

Properties and Example

Proposition

(1) This does not depend on choice of $f_{1}, \ldots, f_{r} . \widetilde{\alpha}(Z)-\operatorname{dim} X$ only depends on Z.
(2) There is a local notion $\widetilde{\alpha}_{x}(Z)$ for $x \in Z$ (similar to the case of log canonical threshold). We have $\widetilde{\alpha}_{x}(Z)=\max _{x \in V} \widetilde{\alpha}(V, V \cap Z)$.

Properties and Example

Proposition

(1) This does not depend on choice of $f_{1}, \ldots, f_{r} . \widetilde{\alpha}(Z)-\operatorname{dim} X$ only depends on Z.
(2) There is a local notion $\widetilde{\alpha}_{x}(Z)$ for $x \in Z$ (similar to the case of log canonical threshold). We have $\widetilde{\alpha}_{x}(Z)=\max _{x \in V} \widetilde{\alpha}(V, V \cap Z)$.
(3) There is a restriction inequality and a semicontinuity result for $\widetilde{\alpha}_{x}(Z)$.

Properties and Example

Proposition

(1) This does not depend on choice of $f_{1}, \ldots, f_{r} . \widetilde{\alpha}(Z)-\operatorname{dim} X$ only depends on Z.
(2) There is a local notion $\widetilde{\alpha}_{x}(Z)$ for $x \in Z$ (similar to the case of log canonical threshold). We have $\widetilde{\alpha}_{x}(Z)=\max _{x \in V} \widetilde{\alpha}(V, V \cap Z)$.
(3) There is a restriction inequality and a semicontinuity result for $\widetilde{\alpha}_{x}(Z)$.
(9) If x is a point of multiplicity k on Z, then $\widetilde{\alpha}_{x}(Z) \leq \frac{n}{k}$.

Properties and Example

Proposition

(1) This does not depend on choice of $f_{1}, \ldots, f_{r} . \widetilde{\alpha}(Z)-\operatorname{dim} X$ only depends on Z.
(2) There is a local notion $\widetilde{\alpha}_{x}(Z)$ for $x \in Z$ (similar to the case of log canonical threshold). We have $\widetilde{\alpha}_{x}(Z)=\max _{x \in V} \widetilde{\alpha}(V, V \cap Z)$.
(3) There is a restriction inequality and a semicontinuity result for $\widetilde{\alpha}_{x}(Z)$.
(9) If x is a point of multiplicity k on Z, then $\widetilde{\alpha}_{x}(Z) \leq \frac{n}{k}$.

Let f_{1}, \ldots, f_{r} be weighted homogeneous polynomials on \mathbf{A}_{x}^{n} of the same degree D. Let w_{1}, \ldots, w_{n} be the weights of the variables x_{1}, \ldots, x_{n}, so that $\left(\sum_{j=1}^{n} w_{j} x_{j} \partial_{x_{j}}\right)\left(f_{i}\right)=D f_{i}$.
If $Z=V\left(f_{1}, \ldots, f_{r}\right)$ has codimension r and has only a singular point at 0 , then $\widetilde{\alpha}(Z)=\frac{\sum_{i=1}^{n} w_{i}}{D}$. (This is already known for $r=1$)

Main Results

- The main results are exact analogues of the hypersurface results:

Main Results

- The main results are exact analogues of the hypersurface results:

Theorem (Chen-D.-Mustață-Olano, Chen-D.-Mustață)
Let $Z \subseteq X$ be a local complete intersection of pure codimension r. Then
$\widetilde{\alpha}(Z) \geq r+k \Longleftrightarrow Z$ has k-du Bois singularities.
$\widetilde{\alpha}(Z)>r+k \Longleftrightarrow Z$ has k-rational singularities.

Main Results

- The main results are exact analogues of the hypersurface results:

Theorem (Chen-D.-Mustață-Olano, Chen-D.-Mustață)
Let $Z \subseteq X$ be a local complete intersection of pure codimension r. Then
$\widetilde{\alpha}(Z) \geq r+k \Longleftrightarrow Z$ has k-du Bois singularities.
$\widetilde{\alpha}(Z)>r+k \Longleftrightarrow Z$ has k-rational singularities.

- To give a sketch of the proof, we need to vaguely describe what mixed Hodge modules on X are. These were defined by Saito.

Main Results

- The main results are exact analogues of the hypersurface results:

Theorem (Chen-D.-Mustață-Olano, Chen-D.-Mustață)
Let $Z \subseteq X$ be a local complete intersection of pure codimension r. Then

$$
\begin{aligned}
& \widetilde{\alpha}(Z) \geq r+k \Longleftrightarrow Z \text { has } k \text {-du Bois singularities. } \\
& \widetilde{\alpha}(Z)>r+k \Longleftrightarrow Z \text { has } k \text {-rational singularities. }
\end{aligned}
$$

- To give a sketch of the proof, we need to vaguely describe what mixed Hodge modules on X are. These were defined by Saito.
- The category of mixed Hodge modules on X is an abelian category MHM (X) of finite length. It satisfies a "six functor formalism" in the sense of Grothendieck.

Hodge Modules

- For any smooth complex algebraic variety W, part of the data of a mixed Hodge module is a bifiltered \mathcal{D}_{W}-module:

$$
\left(\mathcal{M}, F_{\bullet} \mathcal{M}, W_{\bullet} \mathcal{M}\right)
$$

where F_{\bullet} (the "Hodge filtration") is bounded below and consists of coherent \mathcal{O}_{W}-submodules and W_{\bullet} (the "weight filtration") is finite and consists of \mathcal{D}_{W}-submodules.

Hodge Modules

- For any smooth complex algebraic variety W, part of the data of a mixed Hodge module is a bifiltered \mathcal{D}_{W}-module:

$$
\left(\mathcal{M}, F_{\bullet} \mathcal{M}, W_{\bullet} \mathcal{M}\right)
$$

where F_{\bullet} (the "Hodge filtration") is bounded below and consists of coherent \mathcal{O}_{W}-submodules and W_{\bullet} (the "weight filtration") is finite and consists of \mathcal{D}_{W}-submodules.

- Every morphism of mixed Hodge modules is a \mathcal{D}_{W}-linear map. It is automatically bi-strict with respect to F and W.

Hodge Modules

- For any smooth complex algebraic variety W, part of the data of a mixed Hodge module is a bifiltered \mathcal{D}_{W}-module:

$$
\left(\mathcal{M}, F_{\bullet} \mathcal{M}, W_{\bullet} \mathcal{M}\right)
$$

where F_{\bullet} (the "Hodge filtration") is bounded below and consists of coherent \mathcal{O}_{W}-submodules and W_{\bullet} (the "weight filtration") is finite and consists of \mathcal{D}_{W}-submodules.

- Every morphism of mixed Hodge modules is a \mathcal{D}_{W}-linear map. It is automatically bi-strict with respect to F and W.
- If W is a point, then $\operatorname{MHM}(W)$ is equivalent to the category of (graded polarized) mixed Hodge structures.

V-filtrations

- Now let $W=X \times \mathbf{A}_{t}^{r}$. Kashiwara (following work of Malgrange) showed that every "regular holonomic" \mathcal{D}_{W}-module \mathcal{M} admits a " V-filtration" along t_{1}, \ldots, t_{r}.

V-filtrations

- Now let $W=X \times \mathbf{A}_{t}^{r}$. Kashiwara (following work of Malgrange) showed that every "regular holonomic" \mathcal{D}_{W}-module \mathcal{M} admits a " V-filtration" along t_{1}, \ldots, t_{r}.
- Initially, this filtration was indexed by Z, but Saito refined it to a Q-indexed filtration. In this way, it is discretely and left-continuously indexed (so there are countably many jumping numbers). Essentially, it attempts to diagonalize the Euler operator $\theta=\sum_{i=1}^{r} t_{i} \partial_{t_{i}}$.

V-filtrations

- Now let $W=X \times \mathbf{A}_{t}^{r}$. Kashiwara (following work of Malgrange) showed that every "regular holonomic" \mathcal{D}_{W}-module \mathcal{M} admits a " V-filtration" along t_{1}, \ldots, t_{r}.
- Initially, this filtration was indexed by \mathbf{Z}, but Saito refined it to a Q-indexed filtration. In this way, it is discretely and left-continuously indexed (so there are countably many jumping numbers). Essentially, it attempts to diagonalize the Euler operator $\theta=\sum_{i=1}^{r} t_{i} \partial_{t_{i}}$.
- The important properties are
(1) $t_{i} V^{\lambda} \mathcal{M} \subseteq V^{\lambda+1} \mathcal{M}$.
(2) $\partial_{t_{i}} V^{\lambda} \mathcal{M} \subseteq V^{\lambda-1} \mathcal{M}$.
(3) $\theta-\lambda+r$ acts nilpotently on $g r_{V}^{\lambda} \mathcal{M}$, where $V^{>\lambda} \mathcal{M}=\bigcup_{\beta>\lambda} V^{\beta} \mathcal{M}$.

Local Cohomology (mixed Hodge) module

- Returning to $\mathrm{LCI} Z=V\left(f_{1}, \ldots, f_{r}\right) \subseteq X$, the middle-man in the proof is the local cohomology mixed Hodge module $\mathcal{H}_{Z}^{r}\left(\mathcal{O}_{X}\right)$. This is defined as the cokernel of the natural map

$$
\bigoplus_{i=1}^{r} \mathcal{O}_{X}\left[\frac{1}{f_{1} \ldots \hat{f}_{i} \ldots f_{r}}\right] \rightarrow \mathcal{O}_{X}\left[\frac{1}{f_{1} \ldots f_{r}}\right]
$$

Local Cohomology (mixed Hodge) module

- Returning to $\mathrm{LCI} Z=V\left(f_{1}, \ldots, f_{r}\right) \subseteq X$, the middle-man in the proof is the local cohomology mixed Hodge module $\mathcal{H}_{Z}^{r}\left(\mathcal{O}_{X}\right)$. This is defined as the cokernel of the natural map

$$
\bigoplus_{i=1}^{r} \mathcal{O}_{X}\left[\frac{1}{f_{1} \ldots \hat{f}_{i} \ldots f_{r}}\right] \rightarrow \mathcal{O}_{X}\left[\frac{1}{f_{1} \ldots f_{r}}\right]
$$

- Both terms are naturally mixed Hodge modules, so $\mathcal{H}_{Z}^{r}\left(\mathcal{O}_{X}\right)$ is, too. Hence, it carries a Hodge and weight filtration. The Hodge filtration starts at 0 , and the weight filtration starts at $n+r$.

Local Cohomology (mixed Hodge) module

- Returning to $\mathrm{LCI} Z=V\left(f_{1}, \ldots, f_{r}\right) \subseteq X$, the middle-man in the proof is the local cohomology mixed Hodge module $\mathcal{H}_{Z}^{r}\left(\mathcal{O}_{X}\right)$. This is defined as the cokernel of the natural map

$$
\bigoplus_{i=1}^{r} \mathcal{O}_{X}\left[\frac{1}{f_{1} \ldots \hat{f}_{i} \ldots f_{r}}\right] \rightarrow \mathcal{O}_{X}\left[\frac{1}{f_{1} \ldots f_{r}}\right]
$$

- Both terms are naturally mixed Hodge modules, so $\mathcal{H}_{Z}^{r}\left(\mathcal{O}_{X}\right)$ is, too. Hence, it carries a Hodge and weight filtration. The Hodge filtration starts at 0 , and the weight filtration starts at $n+r$.
- We see that $\mathcal{H}_{Z}^{r}\left(\mathcal{O}_{X}\right)$ is supported on Z, so we can also consider the pole order filtration

$$
P_{k} \mathcal{H}_{Z}^{r}\left(\mathcal{O}_{X}\right)=\left\{m \mid\left(f_{1}, \ldots, f_{r}\right)^{k+1} \cdot m=0\right\}
$$

Local Cohomology (mixed Hodge) module

- Returning to $\mathrm{LCI} Z=V\left(f_{1}, \ldots, f_{r}\right) \subseteq X$, the middle-man in the proof is the local cohomology mixed Hodge module $\mathcal{H}_{Z}^{r}\left(\mathcal{O}_{X}\right)$. This is defined as the cokernel of the natural map

$$
\bigoplus_{i=1}^{r} \mathcal{O}_{X}\left[\frac{1}{f_{1} \ldots \hat{f}_{i} \ldots f_{r}}\right] \rightarrow \mathcal{O}_{X}\left[\frac{1}{f_{1} \ldots f_{r}}\right]
$$

- Both terms are naturally mixed Hodge modules, so $\mathcal{H}_{Z}^{r}\left(\mathcal{O}_{X}\right)$ is, too. Hence, it carries a Hodge and weight filtration. The Hodge filtration starts at 0 , and the weight filtration starts at $n+r$.
- We see that $\mathcal{H}_{Z}^{r}\left(\mathcal{O}_{X}\right)$ is supported on Z, so we can also consider the pole order filtration

$$
P_{k} \mathcal{H}_{Z}^{r}\left(\mathcal{O}_{X}\right)=\left\{m \mid\left(f_{1}, \ldots, f_{r}\right)^{k+1} \cdot m=0\right\}
$$

- Saito (for $r=1$) and Mustață-Popa (in general) showed that

$$
F_{k} \subseteq P_{k}
$$

Sketching the proof

- If $i: X \rightarrow X \times \mathbf{A}_{t}^{r}$ is the graph embedding along f_{1}, \ldots, f_{r}, we can consider the Hodge module $B_{f}=i_{+} \mathcal{O}_{X}$. It has easy to understand Hodge and weight filtrations. The interesting thing about it is its V-filtration along t_{1}, \ldots, t_{r}.

Sketching the proof

- If $i: X \rightarrow X \times \mathbf{A}_{t}^{r}$ is the graph embedding along f_{1}, \ldots, f_{r}, we can consider the Hodge module $B_{f}=i_{+} \mathcal{O}_{X}$. It has easy to understand Hodge and weight filtrations. The interesting thing about it is its V-filtration along t_{1}, \ldots, t_{r}. For example, Budur-Mustață-Saito showed $F_{0} V^{\lambda} B_{f}=\mathcal{I}\left(X, Z^{\lambda-\epsilon}\right)$ for $0<\epsilon \ll 1$.

Sketching the proof

- If $i: X \rightarrow X \times \mathbf{A}_{t}^{r}$ is the graph embedding along f_{1}, \ldots, f_{r}, we can consider the Hodge module $B_{f}=i_{+} \mathcal{O}_{X}$. It has easy to understand Hodge and weight filtrations. The interesting thing about it is its V-filtration along t_{1}, \ldots, t_{r}.
For example, Budur-Mustață-Saito showed $F_{0} V^{\lambda} B_{f}=\mathcal{I}\left(X, Z^{\lambda-\epsilon}\right)$ for $0<\epsilon \ll 1$.
- Malgrange showed how to interpret B_{f} as a $\mathcal{D}_{X \times \mathbf{A}_{t}^{r}}$-submodule of

$$
\mathbf{B}:=\mathcal{O}_{X}\left[s_{1}, \ldots, s_{r}, \frac{1}{f_{1} \ldots f_{r}}\right] f_{1}^{s_{1}} \ldots f_{r}^{s_{r}}
$$

Sketching the proof

- If $i: X \rightarrow X \times \mathbf{A}_{t}^{r}$ is the graph embedding along f_{1}, \ldots, f_{r}, we can consider the Hodge module $B_{f}=i_{+} \mathcal{O}_{X}$. It has easy to understand Hodge and weight filtrations. The interesting thing about it is its V-filtration along t_{1}, \ldots, t_{r}.
For example, Budur-Mustață-Saito showed $F_{0} V^{\lambda} B_{f}=\mathcal{I}\left(X, Z^{\lambda-\epsilon}\right)$ for $0<\epsilon \ll 1$.
- Malgrange showed how to interpret B_{f} as a $\mathcal{D}_{X \times \mathbf{A}_{t}^{r}}$-submodule of

$$
\mathbf{B}:=\mathcal{O}_{X}\left[s_{1}, \ldots, s_{r}, \frac{1}{f_{1} \ldots f_{r}}\right] f_{1}^{s_{1}} \ldots f_{r}^{s_{r}}
$$

- The "evaluate at -1 " map $\mathbf{B} \rightarrow \mathcal{H}_{Z}^{r}\left(\mathcal{O}_{X}\right)$ sending $s_{i} \mapsto-1$ restricts to $V^{r} B_{f} \subseteq B_{f}$. It turns out that it descends to an isomorphism on the quotient

$$
\begin{equation*}
V^{r} B_{f} / \sum_{i=1}^{r} t_{i} V^{r-1} B_{f} \tag{2}
\end{equation*}
$$

Finishing the Sketch

- My work with Qianyu Chen shows that the quotient is even isomorphic to $\mathcal{H}_{Z}^{r}\left(\mathcal{O}_{X}\right)$ as a mixed Hodge module. In fact, the map described above, by general considerations, is one such isomorphism.

Finishing the Sketch

- My work with Qianyu Chen shows that the quotient is even isomorphic to $\mathcal{H}_{Z}^{r}\left(\mathcal{O}_{X}\right)$ as a mixed Hodge module. In fact, the map described above, by general considerations, is one such isomorphism.
- Mustață-Popa showed that Z has k-du Bois singularities iff $F_{k}=P_{k}$. We show that $\widetilde{\alpha}(Z) \geq r+k$ is equivalent to $F_{k} B_{f} \subseteq V^{r} B_{f}$, and under the map described above, this is equivalent to $F_{k}=P_{k}$.

Finishing the Sketch

- My work with Qianyu Chen shows that the quotient is even isomorphic to $\mathcal{H}_{Z}^{r}\left(\mathcal{O}_{X}\right)$ as a mixed Hodge module. In fact, the map described above, by general considerations, is one such isomorphism.
- Mustață-Popa showed that Z has k-du Bois singularities iff $F_{k}=P_{k}$. We show that $\widetilde{\alpha}(Z) \geq r+k$ is equivalent to $F_{k} B_{f} \subseteq V^{r} B_{f}$, and under the map described above, this is equivalent to $F_{k}=P_{k}$.
- We show that Z has k-rational singularities iff $F_{k} \cap W_{n+r}=P_{k}$ (which, of course, implies $F_{k}=P_{k}$, so Z has k-du Bois singularities). It is not hard to see that this latter condition is equivalent to $F_{k+1} B_{f} \subseteq V^{>(r-1)} B_{f}$. We show finally that this is equivalent to $\widetilde{\alpha}(Z)>r+k$, finishing the proof.

Some Corollaries

- For LCI Z, k-du Bois implies $(k-1)$-rational.
- (MP) If LCI Z has k-du Bois singularities, then $\operatorname{codim}_{Z}\left(Z_{\text {sing }}\right) \geq 2 k+1$. (CDM) If LCI Z has k-rational singularities, then $\operatorname{codim}_{Z}\left(Z_{\text {sing }}\right) \geq 2 k+2$.

Some Corollaries

- For LCI Z, k-du Bois implies $(k-1)$-rational.
- (MP) If LCI Z has k-du Bois singularities, then $\operatorname{codim}_{Z}\left(Z_{\text {sing }}\right) \geq 2 k+1$. (CDM) If LCI Z has k-rational singularities, then $\operatorname{codim}_{Z}\left(Z_{\text {sing }}\right) \geq 2 k+2$.

Sketch of Proof.

By the restriction result, we can slice by general hyperplanes to assume Z has isolated singularities. Then we must show that $\operatorname{dim} Z=d \geq 2 k+2$. In analogy with Saito's upper bound, we know for $x \in Z_{\text {sing }}$

$$
\widetilde{\alpha}_{x}(Z) \leq \operatorname{dim} X-\frac{1}{2} \operatorname{dim}_{C} T_{x} Z
$$

and by $x \in Z_{\text {sing }}$, we have $\operatorname{dim}_{C} T_{x} Z \geq d+1$. Then use $\widetilde{\alpha}_{x}(Z)>r+k$ to conclude $d>2 k+1$.

