Higher du Bois and higher rational singularities for LCI varieties

Bradley Dirks

May 12, 2023

Birational Geometry Seminar 2023

Minimal Exponent

May 12, 2023

1/22

- Some invariants of hypersurface singularities
- Ø Higher du Bois and higher rational singularities

- Some invariants of hypersurface singularities
- Ø Higher du Bois and higher rational singularities
- Inimial Exponent for Local Complete Intersections (LCI)

- Some invariants of hypersurface singularities
- e Higher du Bois and higher rational singularities
- Minimal Exponent for Local Complete Intersections (LCI)
- Brief description of mixed Hodge modules and local cohomology

- Some invariants of hypersurface singularities
- Ø Higher du Bois and higher rational singularities
- Minimal Exponent for Local Complete Intersections (LCI)
- Brief description of mixed Hodge modules and local cohomology
- Sketch of Proof and some Corollaries

• Every variety today is complex.

- Every variety today is complex.
- We will denote by X a fixed "ambient" variety which is smooth and connected of dimension dim X = n.

- Every variety today is complex.
- We will denote by X a fixed "ambient" variety which is smooth and connected of dimension dim X = n.
- We write $f \in \mathcal{O}_X$ or $f_1, \ldots, f_r \in \mathcal{O}_X$ for regular functions on X.

- Every variety today is complex.
- We will denote by X a fixed "ambient" variety which is smooth and connected of dimension dim X = n.
- We write $f \in \mathcal{O}_X$ or $f_1, \ldots, f_r \in \mathcal{O}_X$ for regular functions on X.
- For affine space A^r, we will often denote a choice of coordinates on A^r by a subscript. So Aⁿ_v has coordinates y₁,..., y_r.

- Every variety today is complex.
- We will denote by X a fixed "ambient" variety which is smooth and connected of dimension dim X = n.
- We write $f \in \mathcal{O}_X$ or $f_1, \ldots, f_r \in \mathcal{O}_X$ for regular functions on X.
- For affine space A^r, we will often denote a choice of coordinates on A^r by a subscript. So Aⁿ_v has coordinates y₁,..., y_r.
- We use $V(f_1, \ldots, f_r) \subseteq X$ to denote the subvariety defined by the regular functions f_1, \ldots, f_r in X.

• Let $H = V(f) \subseteq X$ be a hypersurface in the smooth variety X. Let $\pi : Y \to X$ be a strong resolution of singularities of the pair (X, H), i.e., a proper map with Y smooth which is an isomorphism over X - H and so that $E = \pi^{-1}(H)$ has normal crossings support.

- Let H = V(f) ⊆ X be a hypersurface in the smooth variety X. Let π : Y → X be a strong resolution of singularities of the pair (X, H), i.e., a proper map with Y smooth which is an isomorphism over X − H and so that E = π⁻¹(H) has normal crossings support.
- Numerical data: Let $K_{Y/X} = \sum_{i \in I} k_i E_i$ and $\pi^*(H) = \operatorname{div}(\pi^*(f)) = \sum_{i \in I} a_i E_i$, where E_i are prime divisors which are exceptional for π .

- Let H = V(f) ⊆ X be a hypersurface in the smooth variety X. Let π : Y → X be a strong resolution of singularities of the pair (X, H), i.e., a proper map with Y smooth which is an isomorphism over X − H and so that E = π⁻¹(H) has normal crossings support.
- Numerical data: Let $K_{Y/X} = \sum_{i \in I} k_i E_i$ and $\pi^*(H) = \operatorname{div}(\pi^*(f)) = \sum_{i \in I} a_i E_i$, where E_i are prime divisors which are exceptional for π .
- The log canonical threshold of the pair (X, H) is

$$\operatorname{lct}(X,H) = \operatorname{lct}(f) = \min_{i} \frac{k_{i}+1}{a_{i}}.$$

- Let H = V(f) ⊆ X be a hypersurface in the smooth variety X. Let π : Y → X be a strong resolution of singularities of the pair (X, H), i.e., a proper map with Y smooth which is an isomorphism over X − H and so that E = π⁻¹(H) has normal crossings support.
- Numerical data: Let $K_{Y/X} = \sum_{i \in I} k_i E_i$ and $\pi^*(H) = \operatorname{div}(\pi^*(f)) = \sum_{i \in I} a_i E_i$, where E_i are prime divisors which are exceptional for π .
- The log canonical threshold of the pair (X, H) is

$$\operatorname{lct}(X,H) = \operatorname{lct}(f) = \min_{i} \frac{k_{i}+1}{a_{i}}.$$

• It is related to triviality of multiplier ideals $\mathcal{I}(f^{\lambda})$, which are also defined via numerical data.

 If H is smooth, then lct(f) = 1. In general, lct(f) ≤ 1. With this in mind, we view smaller log canonical thresholds as "more singular".

- If H is smooth, then lct(f) = 1. In general, lct(f) ≤ 1. With this in mind, we view smaller log canonical thresholds as "more singular".
- It is possible for lct(f) = 1 even if f defines a singular divisor. These are called *log canonical singularities*. For example, f = x₁x₂ on A_x².

- If H is smooth, then lct(f) = 1. In general, lct(f) ≤ 1. With this in mind, we view smaller log canonical thresholds as "more singular".
- It is possible for lct(f) = 1 even if f defines a singular divisor. These are called *log canonical singularities*. For example, f = x₁x₂ on A²_x.
- An interesting example is the cusp: $f = x_1^2 + x_2^3$. It satisfies $lct(f) = \frac{5}{6}$.

• As X is smooth, can locally trivialize tangent bundle

$$\mathcal{T}_X = \bigoplus_{i=1}^n \mathcal{O}_X \partial_{x_i}.$$
 (1)

• As X is smooth, can locally trivialize tangent bundle

$$\mathcal{T}_X = \bigoplus_{i=1}^n \mathcal{O}_X \partial_{x_i}.$$
 (1)

By definition, *T_X* ⊆ *End*(*O_X*), and so we can consider the subalgebra generated by *T_X* and *O_X* (acting by multiplication). This is the *ring of differential operators D_X*. If *T_X* is trivialized as in (1), then

$$\mathcal{D}_X = \{\sum_{\alpha \in \mathbf{N}^n} h_\alpha \partial_x^\alpha \mid h_\alpha \in \mathcal{O}_X\}.$$

• As X is smooth, can locally trivialize tangent bundle

$$\mathcal{T}_X = \bigoplus_{i=1}^n \mathcal{O}_X \partial_{x_i}.$$
 (1)

By definition, *T_X* ⊆ *End*(*O_X*), and so we can consider the subalgebra generated by *T_X* and *O_X* (acting by multiplication). This is the *ring of differential operators D_X*. If *T_X* is trivialized as in (1), then

$$\mathcal{D}_X = \{ \sum_{\alpha \in \mathbf{N}^n} h_\alpha \partial_x^\alpha \mid h_\alpha \in \mathcal{O}_X \}.$$

This is a non-commutative ring unless X is a point. Indeed, the commutator [∂_{xi}, h] = ∂_{xi}(h) need not be 0.

Bernstein-Sato polynomials

• Let $f \in \mathcal{O}_X$ as before and let *s* be a new variable.

Bernstein-Sato polynomials

- Let $f \in \mathcal{O}_X$ as before and let *s* be a new variable.
- Consider the free, rank one $\mathcal{O}_X[s, \frac{1}{f}]$ -module

$$\mathcal{O}_X[s,\frac{1}{f}]f^s,$$

which we endow via the Leibniz and power rules an action of \mathcal{D}_X (which commutes with *s*):

$$\partial_{x_i}(hf^s) = \partial_{x_i}(h)f^s + h \frac{\partial_{x_i}(f)s}{f}f^s.$$

Bernstein-Sato polynomials

- Let $f \in \mathcal{O}_X$ as before and let *s* be a new variable.
- Consider the free, rank one $\mathcal{O}_X[s, \frac{1}{f}]$ -module

$$\mathcal{O}_X[s,\frac{1}{f}]f^s,$$

which we endow via the Leibniz and power rules an action of \mathcal{D}_X (which commutes with *s*):

$$\partial_{x_i}(hf^s) = \partial_{x_i}(h)f^s + h \frac{\partial_{x_i}(f)s}{f}f^s.$$

Theorem (Bernstein, Kashiwara, Björk)

There exists a non-zero monic polynomial $b_f(s) \in \mathbf{C}[s]$ of least degree and an element $P(s) \in \mathcal{D}_X[s]$ such that

$$b_f(s)f^s = P(s)f^{s+1},$$

called the Bernstein-Sato polynomial of f.

Birational Geometry Seminar 2023

	Smooth	Normal Crossings	Cusp
f	<i>x</i> ₁	<i>x</i> ₁ <i>x</i> ₂	$x_1^2 + x^3$
LCT:	1	1	<u>5</u> 6
$b_f(s)$:	(s + 1)	$(s + 1)^2$	$(s+1)(s+\frac{5}{6})(s+\frac{7}{6})$

	Smooth	Normal Crossings	Cusp
f	<i>x</i> ₁	<i>x</i> ₁ <i>x</i> ₂	$x_1^2 + x^3$
LCT:	1	1	<u>5</u> 6
$b_f(s)$:	(s + 1)	$(s + 1)^2$	$(s+1)(s+rac{5}{6})(s+rac{7}{6})$

• (Trivial) Always divisible by (s+1).

	Smooth	Normal Crossings	Cusp
f	<i>x</i> ₁	<i>x</i> ₁ <i>x</i> ₂	$x_1^2 + x^3$
LCT:	1	1	<u>5</u> 6
$b_f(s)$:	(s + 1)	$(s + 1)^2$	$(s+1)(s+\frac{5}{6})(s+\frac{7}{6})$

- (Trivial) Always divisible by (s+1).
- (Lichtin, Kollár) We see LCT as (negative of largest) roots of these polynomials.

	Smooth	Normal Crossings	Cusp
f	<i>x</i> ₁	<i>x</i> ₁ <i>x</i> ₂	$x_1^2 + x^3$
LCT:	1	1	<u>5</u> 6
$b_f(s)$:	(s + 1)	$(s + 1)^2$	$(s+1)(s+\frac{5}{6})(s+\frac{7}{6})$

- (Trivial) Always divisible by (s+1).
- (Lichtin, Kollár) We see LCT as (negative of largest) roots of these polynomials.
- (Kashiwara) All roots are negative and rational.
- (Brainçon-Maisonobe) Only the smooth one has b_f(s) actually equal to (s + 1).

Definition (M. Saito)

Let $\tilde{\alpha}(f)$ be the negative of the largest root of the polynomial $\tilde{b}_f(s)$. It is called the minimal exponent of f.

Definition (M. Saito)

Let $\tilde{\alpha}(f)$ be the negative of the largest root of the polynomial $\tilde{b}_f(s)$. It is called the **minimal exponent of** f.

Trivially we have lct(f) = min{1, \(\alpha\)(f)\)} and it is a positive rational number.

Definition (M. Saito)

Let $\tilde{\alpha}(f)$ be the negative of the largest root of the polynomial $\tilde{b}_f(s)$. It is called the minimal exponent of f.

- Trivially we have lct(f) = min{1, \(\alpha\)(f)\)} and it is a positive rational number.
- Non-trivially: Saito showed α̃(f) ≤ n/2 if f defines a singular hypersurface. If f defines a smooth hypersurface, we set α̃(f) = +∞.

du Bois complex

 For any finite type C-scheme Z, du Bois defined (Ω^e_Z, F), an object of a certain "filtered derived category".

du Bois complex

 For any finite type C-scheme Z, du Bois defined (Ω^{*}_Z, F), an object of a certain "filtered derived category".Without saying what that is, this means for any p ∈ Z we can consider the associated graded complexes

$$gr_p^F \underline{\Omega}_Z^{ullet} \in D^b_{coh}(\mathcal{O}_Z)$$

a bounded complex with coherent cohomology.

du Bois complex

 For any finite type C-scheme Z, du Bois defined (Ω^P_Z, F), an object of a certain "filtered derived category".Without saying what that is, this means for any p ∈ Z we can consider the associated graded complexes

$$gr_p^F \underline{\Omega}_Z^{ullet} \in D^b_{coh}(\mathcal{O}_Z)$$

a bounded complex with coherent cohomology.

• By the construction (which I will not go into), there is a natural morphism

$$\Omega^{p}_{Z} \to \underline{\Omega}^{p}_{Z} := gr^{F}_{-p}\underline{\Omega}^{\bullet}_{Z}[p],$$

which is an isomorphism if Z is smooth.

 For any finite type C-scheme Z, du Bois defined (Ω[•]_Z, F), an object of a certain "filtered derived category".Without saying what that is, this means for any p ∈ Z we can consider the associated graded complexes

$$gr_p^F \underline{\Omega}_Z^{ullet} \in D^b_{coh}(\mathcal{O}_Z)$$

a bounded complex with coherent cohomology.

• By the construction (which I will not go into), there is a natural morphism

$$\Omega^{p}_{Z} \to \underline{\Omega}^{p}_{Z} := gr^{F}_{-p}\underline{\Omega}^{\bullet}_{Z}[p],$$

which is an isomorphism if Z is smooth.

• In a vague (Hodge theoretic) sense, this is a nice replacement for the de Rham complex Ω_Z^{\bullet} .
Higher du Bois singularities

• Steenbrink defined a class of singularities, called *du Bois* singularities, as those varieties *Z* such that the natural morphism

$$\mathcal{O}_Z \to \underline{\Omega}_Z^0$$

is a quasi-isomorphism.

Higher du Bois singularities

• Steenbrink defined a class of singularities, called *du Bois* singularities, as those varieties *Z* such that the natural morphism

$$\mathcal{O}_Z \to \underline{\Omega}_Z^0$$

is a quasi-isomorphism.

• Jung, Kim, Saito and Yoon defined recently the class of *k-du Bois* singularities, which are those for which the map

$$\Omega^p_Z \to \underline{\Omega}^p_Z$$

is a quasi-isomorphism for all $p \leq k$.

11/22

Higher du Bois singularities

• Steenbrink defined a class of singularities, called *du Bois* singularities, as those varieties *Z* such that the natural morphism

$$\mathcal{O}_Z \to \underline{\Omega}_Z^0$$

is a quasi-isomorphism.

 Jung, Kim, Saito and Yoon defined recently the class of k-du Bois singularities, which are those for which the map

$$\Omega^p_Z \to \underline{\Omega}^p_Z$$

is a quasi-isomorphism for all $p \leq k$.

Theorem (JKSY, Mustață-Popa-Olano-Witaszek) Let $H = V(f) \subseteq X$ be a hypersurface. Then

 $\widetilde{\alpha}(f) \geq k+1 \iff H$ has k-du Bois singularities.

Higher rational singularities

 A classical notion of singularity is rational singularities: let π : Z̃ → Z be a resolution of singularities. Then Z has rational singularities iff the natural map O_Z → Rπ_{*}(O_{γ̃}) is a quasi-isomorphism.

Higher rational singularities

- A classical notion of singularity is rational singularities: let π : Z → Z be a resolution of singularities. Then Z has rational singularities iff the natural map O_Z → Rπ_{*}(O_{γ̃}) is a quasi-isomorphism.
- Kovács showed that rational singularities are du Bois. Saito showed that, for H = V(f) ⊆ X, H has rational singularities iff α̃(H) > 1.

Higher rational singularities

- A classical notion of singularity is rational singularities: let π : Z̃ → Z be a resolution of singularities. Then Z has rational singularities iff the natural map O_Z → Rπ_{*}(O_{γ̃}) is a quasi-isomorphism.
- Kovács showed that rational singularities are du Bois. Saito showed that, for H = V(f) ⊆ X, H has rational singularities iff α̃(H) > 1.
- Recently, Friedman-Laza defined the notion of *k*-rational singularities. Using a resolution, one can construct a morphism

$$\underline{\Omega}_{Z}^{k} \xrightarrow{\psi_{k}} R\mathcal{H}om(\underline{\Omega}_{Z}^{\dim Z}, \omega_{Z}^{\bullet}).$$

Then one requires Z be k-du Bois and for ψ_p to be a quasi-isomorphism for all $p \leq k$. For hypersurfaces, Saito shows equiv. to $\tilde{\alpha}(f) > k + 1$.

• The notion of LCT immediately generalizes to Z defined by an ideal (f_1, \ldots, f_r) . In fact, one can define a Bernstein-Sato polynomial for f_1, \ldots, f_r : $b_{\underline{f}}(s)$, and the LCT is again the negative of the largest root of this polynomial.

Case of $Z = V(f_1, \ldots, f_r)$

- The notion of LCT immediately generalizes to Z defined by an ideal (f_1, \ldots, f_r) . In fact, one can define a Bernstein-Sato polynomial for f_1, \ldots, f_r : $b_{\underline{f}}(s)$, and the LCT is again the negative of the largest root of this polynomial.
- Budur-Mustață-Saito related this polynomial to rational singularities of Z, if $\operatorname{codim}_X(Z) = r$. However, for the other classes of singularities, this is difficult (thus far, not possible) to do.

- The notion of LCT immediately generalizes to Z defined by an ideal (f_1, \ldots, f_r) . In fact, one can define a Bernstein-Sato polynomial for f_1, \ldots, f_r : $b_{\underline{f}}(s)$, and the LCT is again the negative of the largest root of this polynomial.
- Budur-Mustață-Saito related this polynomial to rational singularities of Z, if $\operatorname{codim}_X(Z) = r$. However, for the other classes of singularities, this is difficult (thus far, not possible) to do.
- To remedy this, we take inspiration from a result of Mustață:

Theorem (Mustață)

Let
$$g = \sum_{i=1}^{r} f_i y_i \in \mathcal{O}_Y$$
 where $Y = X \times \mathbf{A}_y^r$. Then

$$\widetilde{b}_g(s) = b_{\underline{f}}(s).$$

Definition of Minimal Exponent for Z

Let U = Y - (X × {0}). Assume codim_X(Z) = r (so Z is a complete intersection). We define the minimal exponent of Z as

$$\widetilde{\alpha}(Z) := \widetilde{\alpha}(g|_U).$$

Definition of Minimal Exponent for Z

Let U = Y - (X × {0}). Assume codim_X(Z) = r (so Z is a complete intersection). We define the minimal exponent of Z as

$$\widetilde{\alpha}(Z) := \widetilde{\alpha}(g|_U).$$

 Why restrict to U? First of all, b_f(s) is always divisible by (s + r) in the complete intersection case. So α̃(g) ≤ r ⇒ can't just use g. Let U = Y - (X × {0}). Assume codim_X(Z) = r (so Z is a complete intersection). We define the minimal exponent of Z as

$$\widetilde{\alpha}(Z) := \widetilde{\alpha}(g|_U).$$

- Why restrict to U? First of all, b_f(s) is always divisible by (s + r) in the complete intersection case. So α̃(g) ≤ r ⇒ can't just use g.
- Secondly, a simple computation shows that

$$\operatorname{Sing}(g) = (Z \times \{0\}) \cup \Sigma,$$

where Σ lies over Z_{sing} . Restricting to U removes the "trivial" part of this singular locus.

This does not depend on choice of f₁,..., f_r. α̃(Z) – dim X only depends on Z.

- This does not depend on choice of f₁,..., f_r. α̃(Z) dim X only depends on Z.
- ② There is a local notion ã_x(Z) for x ∈ Z (similar to the case of log canonical threshold). We have ã_x(Z) = max_{x∈V} ã(V, V ∩ Z).

- This does not depend on choice of f₁,..., f_r. α̃(Z) dim X only depends on Z.
- Output: There is a local notion ã_x(Z) for x ∈ Z (similar to the case of log canonical threshold). We have ã_x(Z) = max_{x∈V} ã(V, V ∩ Z).
- 3 There is a restriction inequality and a semicontinuity result for $\widetilde{\alpha}_{x}(Z)$.

- This does not depend on choice of f₁,..., f_r. α̃(Z) dim X only depends on Z.
- Output: There is a local notion ã_x(Z) for x ∈ Z (similar to the case of log canonical threshold). We have ã_x(Z) = max_{x∈V} ã(V, V ∩ Z).
- 3 There is a restriction inequality and a semicontinuity result for $\widetilde{\alpha}_{x}(Z)$.
- If x is a point of multiplicity k on Z, then $\widetilde{\alpha}_x(Z) \leq \frac{n}{k}$.

- This does not depend on choice of f₁,..., f_r. α̃(Z) dim X only depends on Z.
- ② There is a local notion ã_x(Z) for x ∈ Z (similar to the case of log canonical threshold). We have ã_x(Z) = max_{x∈V} ã(V, V ∩ Z).
- Solution There is a restriction inequality and a semicontinuity result for $\widetilde{\alpha}_{x}(Z)$.

If x is a point of multiplicity k on Z, then $\widetilde{\alpha}_{x}(Z) \leq \frac{n}{k}$.

Let f_1, \ldots, f_r be weighted homogeneous polynomials on \mathbf{A}_x^n of the same degree D. Let w_1, \ldots, w_n be the weights of the variables x_1, \ldots, x_n , so that $\left(\sum_{j=1}^n w_j x_j \partial_{x_j}\right)(f_i) = Df_i$. If $Z = V(f_1, \ldots, f_r)$ has codimension r and has only a singular point at 0, then $\widetilde{\alpha}(Z) = \frac{\sum_{j=1}^n w_j}{D}$. (This is already known for r = 1)

Theorem (Chen-D.-Mustață-Olano, Chen-D.-Mustață)

Let $Z \subseteq X$ be a local complete intersection of pure codimension r. Then

 $\widetilde{\alpha}(Z) \geq r + k \iff Z$ has k-du Bois singularities.

 $\widetilde{\alpha}(Z) > r + k \iff Z$ has k-rational singularities.

Theorem (Chen-D.-Mustață-Olano, Chen-D.-Mustață)

Let $Z \subseteq X$ be a local complete intersection of pure codimension r. Then

 $\widetilde{\alpha}(Z) \geq r + k \iff Z$ has k-du Bois singularities.

 $\widetilde{\alpha}(Z) > r + k \iff Z$ has k-rational singularities.

• To give a sketch of the proof, we need to vaguely describe what *mixed Hodge modules* on *X* are. These were defined by Saito.

Theorem (Chen-D.-Mustață-Olano, Chen-D.-Mustață)

Let $Z \subseteq X$ be a local complete intersection of pure codimension r. Then

 $\widetilde{\alpha}(Z) \ge r + k \iff Z$ has k-du Bois singularities.

 $\widetilde{\alpha}(Z) > r + k \iff Z$ has k-rational singularities.

- To give a sketch of the proof, we need to vaguely describe what *mixed Hodge modules* on *X* are. These were defined by Saito.
- The category of mixed Hodge modules on X is an abelian category MHM(X) of finite length. It satisfies a "six functor formalism" in the sense of Grothendieck.

• For any smooth complex algebraic variety *W*, part of the data of a mixed Hodge module is a *bifiltered* \mathcal{D}_W -module:

 $(\mathcal{M}, F_{\bullet}\mathcal{M}, W_{\bullet}\mathcal{M}),$

where F_{\bullet} (the "Hodge filtration") is bounded below and consists of coherent \mathcal{O}_W -submodules and W_{\bullet} (the "weight filtration") is finite and consists of \mathcal{D}_W -submodules.

• For any smooth complex algebraic variety *W*, part of the data of a mixed Hodge module is a *bifiltered* \mathcal{D}_W -module:

 $(\mathcal{M}, F_{\bullet}\mathcal{M}, W_{\bullet}\mathcal{M}),$

- where F_{\bullet} (the "Hodge filtration") is bounded below and consists of coherent \mathcal{O}_W -submodules and W_{\bullet} (the "weight filtration") is finite and consists of \mathcal{D}_W -submodules.
- Every morphism of mixed Hodge modules is a \mathcal{D}_W -linear map. It is automatically bi-strict with respect to F and W.

• For any smooth complex algebraic variety *W*, part of the data of a mixed Hodge module is a *bifiltered* \mathcal{D}_W -module:

 $(\mathcal{M}, F_{\bullet}\mathcal{M}, W_{\bullet}\mathcal{M}),$

- where F_{\bullet} (the "Hodge filtration") is bounded below and consists of coherent \mathcal{O}_W -submodules and W_{\bullet} (the "weight filtration") is finite and consists of \mathcal{D}_W -submodules.
- Every morphism of mixed Hodge modules is a \mathcal{D}_W -linear map. It is automatically bi-strict with respect to F and W.
- If W is a point, then MHM(W) is equivalent to the category of (graded polarized) mixed Hodge structures.

V-filtrations

• Now let $W = X \times \mathbf{A}_t^r$. Kashiwara (following work of Malgrange) showed that every "regular holonomic" \mathcal{D}_W -module \mathcal{M} admits a "V-filtration" along t_1, \ldots, t_r .

V-filtrations

- Now let $W = X \times \mathbf{A}_t^r$. Kashiwara (following work of Malgrange) showed that every "regular holonomic" \mathcal{D}_W -module \mathcal{M} admits a "V-filtration" along t_1, \ldots, t_r .
- Initially, this filtration was indexed by Z, but Saito refined it to a Q-indexed filtration. In this way, it is discretely and left-continuously indexed (so there are countably many jumping numbers). Essentially, it attempts to diagonalize the Euler operator $\theta = \sum_{i=1}^{r} t_i \partial_{t_i}$.

V-filtrations

- Now let $W = X \times \mathbf{A}_t^r$. Kashiwara (following work of Malgrange) showed that every "regular holonomic" \mathcal{D}_W -module \mathcal{M} admits a "V-filtration" along t_1, \ldots, t_r .
- Initially, this filtration was indexed by Z, but Saito refined it to a Q-indexed filtration. In this way, it is discretely and left-continuously indexed (so there are countably many jumping numbers). Essentially, it attempts to diagonalize the Euler operator $\theta = \sum_{i=1}^{r} t_i \partial_{t_i}$.
- The important properties are

 - $\partial_{t_i} V^{\lambda} \mathcal{M} \subseteq V^{\lambda-1} \mathcal{M}.$
 - **(a)** $\theta \lambda + r$ acts nilpotently on $gr_V^{\lambda}\mathcal{M}$, where $V^{>\lambda}\mathcal{M} = \bigcup_{\beta > \lambda} V^{\beta}\mathcal{M}$.

• Returning to LCI $Z = V(f_1, \ldots, f_r) \subseteq X$, the middle-man in the proof is the local cohomology mixed Hodge module $\mathcal{H}^r_Z(\mathcal{O}_X)$. This is defined as the cokernel of the natural map

$$\bigoplus_{i=1}^r \mathcal{O}_X[\frac{1}{f_1 \dots \hat{f}_i \dots f_r}] \to \mathcal{O}_X[\frac{1}{f_1 \dots f_r}].$$

• Returning to LCI $Z = V(f_1, \ldots, f_r) \subseteq X$, the middle-man in the proof is the local cohomology mixed Hodge module $\mathcal{H}_Z^r(\mathcal{O}_X)$. This is defined as the cokernel of the natural map

$$\bigoplus_{i=1}^{r} \mathcal{O}_{X}\left[\frac{1}{f_{1} \dots \hat{f}_{i} \dots f_{r}}\right] \to \mathcal{O}_{X}\left[\frac{1}{f_{1} \dots f_{r}}\right].$$

• Both terms are naturally mixed Hodge modules, so $\mathcal{H}_Z^r(\mathcal{O}_X)$ is, too. Hence, it carries a Hodge and weight filtration. The Hodge filtration starts at 0, and the weight filtration starts at n + r.

• Returning to LCI $Z = V(f_1, \ldots, f_r) \subseteq X$, the middle-man in the proof is the local cohomology mixed Hodge module $\mathcal{H}^r_Z(\mathcal{O}_X)$. This is defined as the cokernel of the natural map

$$\bigoplus_{i=1}^{r} \mathcal{O}_{X}\left[\frac{1}{f_{1} \dots \hat{f}_{i} \dots f_{r}}\right] \to \mathcal{O}_{X}\left[\frac{1}{f_{1} \dots f_{r}}\right].$$

- Both terms are naturally mixed Hodge modules, so $\mathcal{H}_Z^r(\mathcal{O}_X)$ is, too. Hence, it carries a Hodge and weight filtration. The Hodge filtration starts at 0, and the weight filtration starts at n + r.
- We see that $\mathcal{H}_Z^r(\mathcal{O}_X)$ is supported on Z, so we can also consider the *pole order filtration*

$$P_k\mathcal{H}^r_Z(\mathcal{O}_X)=\{m\mid (f_1,\ldots,f_r)^{k+1}\cdot m=0\}.$$

• Returning to LCI $Z = V(f_1, \ldots, f_r) \subseteq X$, the middle-man in the proof is the local cohomology mixed Hodge module $\mathcal{H}^r_Z(\mathcal{O}_X)$. This is defined as the cokernel of the natural map

$$\bigoplus_{i=1}^r \mathcal{O}_X[\frac{1}{f_1 \dots \hat{f}_i \dots f_r}] \to \mathcal{O}_X[\frac{1}{f_1 \dots f_r}].$$

- Both terms are naturally mixed Hodge modules, so $\mathcal{H}_Z^r(\mathcal{O}_X)$ is, too. Hence, it carries a Hodge and weight filtration. The Hodge filtration starts at 0, and the weight filtration starts at n + r.
- We see that $\mathcal{H}_Z^r(\mathcal{O}_X)$ is supported on Z, so we can also consider the *pole order filtration*

$$P_k\mathcal{H}^r_Z(\mathcal{O}_X)=\{m\mid (f_1,\ldots,f_r)^{k+1}\cdot m=0\}.$$

• Saito (for r = 1) and Mustață-Popa (in general) showed that

$$F_k \subseteq P_k$$

If *i* : X → X × A^r_t is the graph embedding along *f*₁,..., *f*_r, we can consider the Hodge module B_f = *i*₊O_X. It has easy to understand Hodge and weight filtrations. The interesting thing about it is its V-filtration along *t*₁,..., *t*_r.

If *i* : X → X × A^r_t is the graph embedding along f₁,..., f_r, we can consider the Hodge module B_f = i₊O_X. It has easy to understand Hodge and weight filtrations. The interesting thing about it is its V-filtration along t₁,..., t_r. For example, Budur-Mustață-Saito showed F₀V^λB_f = I(X, Z^{λ-ε}) for 0 < ε ≪ 1.

- If i: X → X × A^r_t is the graph embedding along f₁,..., f_r, we can consider the Hodge module B_f = i₊O_X. It has easy to understand Hodge and weight filtrations. The interesting thing about it is its V-filtration along t₁,..., t_r. For example, Budur-Mustață-Saito showed F₀V^λB_f = I(X, Z^{λ-ε}) for 0 < ε ≪ 1.
- Malgrange showed how to interpret B_f as a $\mathcal{D}_{X \times \mathbf{A}_t^r}$ -submodule of

$$\mathbf{B} := \mathcal{O}_X[s_1,\ldots,s_r,\frac{1}{f_1\ldots f_r}]f_1^{s_1}\ldots f_r^{s_r}.$$

- If i : X → X × A^r_t is the graph embedding along f₁,..., f_r, we can consider the Hodge module B_f = i₊O_X. It has easy to understand Hodge and weight filtrations. The interesting thing about it is its V-filtration along t₁,..., t_r. For example, Budur-Mustață-Saito showed F₀V^λB_f = I(X, Z^{λ-ε}) for 0 < ε ≪ 1.
- Malgrange showed how to interpret B_f as a $\mathcal{D}_{X \times \mathbf{A}_t^r}$ -submodule of

$$\mathbf{B} := \mathcal{O}_X[s_1,\ldots,s_r,\frac{1}{f_1\ldots f_r}]f_1^{s_1}\ldots f_r^{s_r}.$$

• The "evaluate at -1" map $\mathbf{B} \to \mathcal{H}_Z^r(\mathcal{O}_X)$ sending $s_i \mapsto -1$ restricts to $V^r B_f \subseteq B_f$. It turns out that it descends to an isomorphism on the quotient

$$V^{r}B_{f}/\sum_{i=1}^{r}t_{i}V^{r-1}B_{f}.$$
 (2)

20 / 22

 My work with Qianyu Chen shows that the quotient is even isomorphic to \$\mathcal{H}_Z^r(\mathcal{O}_X)\$ as a mixed Hodge module. In fact, the map described above, by general considerations, is one such isomorphism.
- My work with Qianyu Chen shows that the quotient is even isomorphic to $\mathcal{H}_Z^r(\mathcal{O}_X)$ as a *mixed Hodge module*. In fact, the map described above, by general considerations, is one such isomorphism.
- Mustață-Popa showed that Z has k-du Bois singularities iff F_k = P_k. We show that α̃(Z) ≥ r + k is equivalent to F_kB_f ⊆ V^rB_f, and under the map described above, this is equivalent to F_k = P_k.

- My work with Qianyu Chen shows that the quotient is even isomorphic to $\mathcal{H}_Z^r(\mathcal{O}_X)$ as a *mixed Hodge module*. In fact, the map described above, by general considerations, is one such isomorphism.
- Mustață-Popa showed that Z has k-du Bois singularities iff $F_k = P_k$. We show that $\widetilde{\alpha}(Z) \ge r + k$ is equivalent to $F_k B_f \subseteq V^r B_f$, and under the map described above, this is equivalent to $F_k = P_k$.
- We show that Z has k-rational singularities iff $F_k \cap W_{n+r} = P_k$ (which, of course, implies $F_k = P_k$, so Z has k-du Bois singularities). It is not hard to see that this latter condition is equivalent to $F_{k+1}B_f \subseteq V^{>(r-1)}B_f$. We show finally that this is equivalent to $\widetilde{\alpha}(Z) > r + k$, finishing the proof.

Some Corollaries

- For LCI Z, k-du Bois implies (k-1)-rational.
- (MP) If LCI Z has k-du Bois singularities, then codim_Z(Z_{sing}) ≥ 2k + 1.
 (CDM) If LCI Z has k-rational singularities, then codim_Z(Z_{sing}) ≥ 2k + 2.

Some Corollaries

- For LCI Z, k-du Bois implies (k 1)-rational.
- (MP) If LCI Z has k-du Bois singularities, then codim_Z(Z_{sing}) ≥ 2k + 1.
 (CDM) If LCI Z has k-rational singularities, then codim_Z(Z_{sing}) ≥ 2k + 2.

Sketch of Proof.

By the restriction result, we can slice by general hyperplanes to assume Z has isolated singularities. Then we must show that dim $Z = d \ge 2k + 2$. In analogy with Saito's upper bound, we know for $x \in Z_{sing}$

$$\widetilde{lpha}_x(Z) \leq \dim X - rac{1}{2} \dim_{\mathbf{C}} T_x Z,$$

and by $x \in Z_{sing}$, we have dim_C $T_x Z \ge d + 1$. Then use $\widetilde{\alpha}_x(Z) > r + k$ to conclude d > 2k + 1.